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Abstract – In order to solve the problem that the low recognition rate of the driving condition reduces the control 

effect of the whole vehicle energy control strategy, this paper proposes an intelligent identification method of the 

driving condition which uses a genetic algorithm (GA) to optimize the back propagation neural network (BPNN) 

intelligent identification of driving conditions. First, 21 typical driving conditions are classified according to the 

dimension reduction characteristic values and the comprehensive driving condition is constructed. Second, the typical 

driving condition identification model is established by the K-means clustering and simulated. Then, the K-means 

condition identification model is optimized by the BPNN method and the BPNN condition identification model are 

simulated. Finally, the genetic algorithm is used to optimal the BPNN condition identification model, and the second 

optimization model of the BPNN condition identification (GA-BPNN) is established and simulated in the MATLAB 

environment. The main contribution of the paper is that GA-BPNN condition identification can accurately identify 

future driving conditions. Results show that compared with the traditional K-means clustering method and BPNN 

intelligent identification method, the GA-BPNN driving condition intelligent identification method can further 

improve the condition identification accuracy, and the driving conditions recognition accuracy reaches 93%. 

Keywords – Plug-in Hybrid Electric Vehicle, Driving Cycle Prediction, Energy Management Strategy, Equivalent 

Fuel Consumption Minimization.  

I. INTRODUCTION 

At present, the logic threshold energy control strategy of PHEVs is mainly based on the parameters of current 

vehicle demand power, driving speed, power battery SOC, etc. The logic threshold energy control strategy can 

improve the efficiency of plug-in hybrid vehicles (PHEVs) under certain driving conditions, but it cannot 

guarantee the minimum fuel consumption when the vehicle runs under actual driving conditions [1-2]. The actual 

driving conditions will change with the changing driving habits, driving routes, traffic conditions and road 

conditions. Therefore, the design of energy control strategy should consider the road condition information of 

vehicles in the future, and condition identification technology is one of the effective means to obtain the 

information of future driving conditions [3]. 

The basic principles of driving condition identification are to classify the typical driving conditions, select the 

representative driving conditions to build comprehensive driving conditions, and then use different identification 

methods to identify the current driving conditions of the vehicle, such as clustering and neural network. The 

selected comprehensive driving conditions are compared with the selected driving conditions, in order to identify 

the type of the current operating conditions belong [4-5]. Since the identification accuracy of the future driving 

condition information will seriously affect the control effect of the control strategy, cluster analysis, neural 
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network, dynamic programming, intelligent control and other methods can be used to predict and identify the 

future vehicle driving condition information [6-8]. Shi et al of Hefei University of Technology used the K-means 

clustering method to identify and classify the road conditions in the city based on the dimensionality reduction of 

the characteristic parameters of the driving conditions. The accuracy of the classification results can be meet the 

requirements [9]. Yin et al selected four typical urban driving conditions, used principal component analysis and 

K-means clustering method to filter out four representative parameters such as average speed, and finally 

identified and classified the real-time operating conditions through the LVQ neural network. The results prove the 

high efficiency of the recognition accuracy [10]. After denoising and filtering the collected signals, Zhang et al 

used principal component analysis to reduce the dimensionality of the collected data. Finally, based on the 

obtained data, the driving condition samples are established, and the KNN algorithm is used to train and classify 

them, obtaining better results [11]. Zhang et al proposed an adaptive minimum equivalent fuel consumption 

strategy to improve the energy management strategy of hybrid heavy-duty vehicles. Six typical driving conditions 

of hybrid heavy-duty vehicles are obtained through hierarchical clustering algorithm, and a driving condition 

recognition algorithm based on neural network is proposed [12]. 

Based on the above analysis of the driving condition identification method, this paper firstly uses principal 

component analysis method to reduce the dimension of the driving condition characteristic parameters and 

establish a comprehensive driving condition. Secondly, the K-means clustering identification model is established 

by the K-means clustering identification method, and is simulated to verify its recognition accuracy. Then, the BP 

driving condition recognition model is used established by the BPNN intelligent algorithm and simulated to verify 

its recognition accuracy. Finally, the GA-BPNN intelligent recognition model of the driving condition is 

established by the genetic algorithm and is simulated to verify its driving condition recognition accuracy. 

Meanwhile, the recognition results three different driving condition recognition methods are summarized and 

analyzed. Results show that compared with the K-means clustering identifications and BP neural network 

intelligent algorithm, the GA-BPNN driving condition intelligent recognition can more accurately identify the 

condition identification accuracy. 

II. CONSTRUCTION OF DRIVING CONDITIONS 

During the actual driving process, the vehicle will drive under the complex road conditions, such as cities, 

villages and highways. Besides, the speed of the vehicle will also vary greatly with the time under various 

driving conditions. In order to construct a comprehensive driving condition, multiple kinematic characteristic 

parameters are selected to characterize each typical driving condition, and the principal component analysis 

method is used to reduce the dimensionality. Feature parameters, several feature parameters with low correlation 

are obtained as variables for the classification of typical driving conditions [13]. 

Considering the comprehensiveness of comprehensive driving conditions, 21 typical driving conditions are 

classified by the K-means clustering method. Some characteristics of these 21 typical driving conditions are 

shown in Table 1. 

It can be seen from Table 1 that 21 typical driving conditions are characterized by nine characteristic 

parameters. The nine characteristic parameters are the maximum driving speed vmax, the average driving speed 

vavg, the maximum acceleration _ maxacca , the average acceleration _acc avga , the maximum deceleration 
_ maxdcca , and 
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the average deceleration 
_dcc avg

a , Total stroke S, idling time Tidle and number of stops Istop. Although more 

characteristic parameters of each driving condition will improve the accuracy of the identification, too many 

feature parameters will increase the workload of driving condition identification, which leads to poor real-time 

performance of condition recognition. Considering the impact on the real-time performance of driving condition 

recognition, the main component analysis method is used to reduce the dimension of the 21 driving conditions by 

the SPSS software. 

Table 1. 21 Characteristic parameters of typical cycle conditions. 

Driving Condition maxv   
avgv  

acc_maxa  
acc_avga  

dcc_maxa  
dcc_avga  S idleT  Istop

 

JPN1015 69.97 22.68 0.79 0.57 -0.83 -0.65 4.16 215 7 

ARB02 129.23 70.04 3.53 0.66 -3.62 -0.7 31.91 123 19 

ARTERIAL 64.37 39.71 1.07 0.6 -2.01 -1.79 3.22 48 4 

CBDTRUCK 32.19 14.86 0.36 0.29 -0.63 -0.56 3.51 159 14 

COMMUTER 88.51 70.28 1.03 0.28 -2.01 -1.89 6.44 40 1 

ECE_EUDC 120 32.1 1.06 0.54 -1.39 -0.79 10.93 339 13 

FTP 91.25 25.82 1.48 0.51 -1.48 -0.58 17.77 361 22 

HL07 128.75 85.74 3.58 1.29 -2.55 -0.79 10.05 41 2 

HWFET 96.4 77.58 1.43 0.19 -1.48 -0.22 16.51 6 1 

LA92 108.15 39.6 3.08 0.67 -3.93 -0.75 15.8 234 16 

MANHATTAN 40.72 10.98 2.06 0.54 -2.5 -0.67 3.32 394 20 

NEDC 120 33.21 1.06 0.54 -1.39 -0.79 10.93 298 13 

NYCC 44.58 11.41 2.68 0.62 -2.64 -0.61 1.9 210 18 

NYCCOMP 87.94 14.1 4.11 0.47 -3.88 -0.54 4.03 341 19 

NurembergR36 53.7 14.33 1.88 0.58 -2.11 -0.55 4.32 334 24 

SC03 88.19 34.51 2.28 0.5 -2.73 -0.6 5.76 117 6 

UDDS 91.25 31.51 1.48 0.5 -1.48 -0.58 11.99 259 17 

US06 129.23 77.2 3.76 0.67 -3.08 -0.73 12.89 45 5 

WVUCTIY 57.65 13.59 1.14 0.3 -3.24 -0.4 5.32 427 14 

WVUINTER 97.74 54.75 1.42 0.2 -1.82 -0.21 24.96 153 9 

WVUSUB 72.1 25.87 1.29 0.33 -2.16 -0.42 11.97 420 9 

The correlation coefficient between each characteristic parameter is shown in Table 2. 

Table 2. Correlation coefficient of characteristic parameters. 

Characteristic 

Parameters 
maxv  

avgv  
acc_maxa  acc_avga  dcc_maxa  dcc_avga  S idleT  stopI  

maxv
 

1.000 0.726 0.437 0.383 -0.237 -0.040 0.651 -0.332 -0.287 
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Characteristic 

Parameters 
maxv  

avgv  
acc_maxa  

acc_avga  
dcc_maxa  

dcc_avga  S idleT  
stopI  

avgv
 

0.726 1.000 0.310 0.264 -0.114 -0.225 0.552 -0.779 -0.661 

acc_maxa
 

0.437 0.310 1.000 0.575 -0.812 0.117 0.218 -0.168 0.145 

acc_avga
 

0.383 0.264 0.575 1.000 -0.287 -0.180 -0.036 -.181 -0.002 

dcc_maxa
 

-0.237 -0.114 -0.812 -0.287 1.000 -0.013 -0.153 -0.048 -0.191 

dcc_avga
 

-0.040 -0.225 0.117 -0.180 -0.013 1.000 0.274 0.378 0.347 

S 0.651 0.552 0.218 -0.036 -0.153 0.274 1.000 -0.183 0.033 

idleT
 

-0.332 -0.779 -0.168 -0.181 -0.048 0.378 -0.183 1.000 0.707 

Istop

 
-0.287 -0.661 0.145 -0.002 -0.191 0.347 0.033 0.707 1.000 

When the correlation coefficient is between 0.6 and 0.8, the two variables are strongly correlated. At this time, 

one variable is selected as a representative. According to the correlation between the various characteristic 

parameters presented in the Table 2 a total of four selections including the maximum driving speed, the maximum 

acceleration, the average acceleration and the average deceleration are selected under the premise of ensuring the 

accuracy and real-time of driving conditions. The feature parameters are the result of dimensionality reduction 

processing. The four selected characteristic parameters are used to carry out systematic clustering analysis under 

the 21 typical driving conditions. In the clustering process, the distance between different individuals is calculated 

by “square Euclidean distance” formula as in (1) for classification. 

=
4

2

1

( , ) ( ) , , [1,21]i j im jm
m

P i j x x x x i j i j Z i j



                              (1) 

Where, i  and j  represent different individuals, and m  represents a variable. 

Genealogy diagram using average connections (between groups)

Rescaled distance cluster combination

 

Fig. 1. Genealogy diagram of 21 typical driving conditions. 

After systematic clustering, the pedigree diagram of 21 typical driving conditions is shown in Figure 1. 
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Table 3. Classification results of 21 driving conditions. 

Driving Condition Classification Driving Condition Similar Conditions 

First category CBDTRUCK, MANHATTAN, NYCC Congestion conditions 

Second category 
JPN1015, ARTERIAL, NurembergR36, 

WVUCITY, WVUSUB 
City conditions 

The third category 
FTP, UDDS, COMMUTER, SC03, 

NYCCOMP, HWFET, LA92, WVUINTER 
Fast driving condition 

The fourth category ARB02, ECE_EUDC, HL07, NEDC, US06 High-speed driving conditions 

It can be seen from the Figure 1 that with the reduction of the redirection, the classification of 21 typical 

driving conditions becomes more detailed. In order to ensure the similarity of the driving conditions within the 

group and the accuracy of the clustering after the grouping, the paper will select a reset ratio of 5 and divide all 

the driving conditions into four categories. After analyzing the data of each type of driving condition, the four 

types of driving conditions are named as congestion driving condition, urban driving condition, fast driving 

condition and high-speed driving condition respectively. The classification results of 21 typical driving 

conditions are shown in Table 3. 

In order to construct a comprehensive driving conditions, the representative typical driving conditions are 

selected as sub-conditions from four kinds of driving conditions. After comparative analysis of each typical 

driving condition, NurembergR36 in urban conditions, HWFET in fast conditions, NYCC in congestion 

conditions, US06 in high-speed conditions, and UDDS in fast conditions are selected, a total of five A typical 

driving conditions is connected to construct a comprehensive driving conditions, as shown in Figure 2. 
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Fig. 2. Comprehensive driving conditions 

III. ESTABLISHMENT AND VERIFICATION OF K-MEANS CLUSTERING RECOGNITION 

MODEL 

During the process of identifying driving conditions, using traditional K-means clustering identification is a 

simple and easy method [14]. K-means algorithm tries to solve the clustering problem by optimizing the given 

index [15]. The basic driving principle of this method is to determine k initial cluster centers and iteration times. 

At the beginning of iteration, the distance between each point in the data set and the cluster center is determined 

by Euclidean distance calculation formula as in (2), and then each point and its nearest cluster center are 

classified as a class, and then the average value of this class of points is taken as the cluster center at the 

beginning of the next iteration, and this process is repeatedly cycled until the accuracy requirement is met or the 

iteration is controlled according to the maximum iteration times [16]. 
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=
4

2

m 1

( , ) ( ) ,i j im jmP i j x x x x i j i j Z i



                             (2) 

Where, i and j represent different individuals, and  represents a variable. 

Before using K-means for cluster recognition, the K-means clustering function is firstly used in SPSS 

software, the cluster center to 4 and the number of iterations to 2 are set and then the final cluster center of 21 

typical driving conditions are determined, as shown in Table 4. 

Table 4. The final Cluster Centers of 21 Driving Conditions. 

Category 1 2 3 4 

Maximum driving speed 93.68 125.44 63.56 39.16 

Maximum acceleration 2.04 2.60 1.23 1.70 

Average acceleration 0.42 0.74 0.48 0.48 

Average deceleration -0.67 -0.76 -0.76 -0.61 

After determining the final cluster center for cluster identification, the integrated driving conditions 

established above are taken as a test sample. Before the condition identification, the selected test samples need 

to be processed. The operating time of the comprehensive driving condition is 4418 seconds. If this operating 

condition is used directly for operating condition identification, the operating cycle of this operating condition is 

too long and cannot meet the identification needs of actual road conditions. Compared with the recognition 

accuracy of driving conditions in different time intervals, it is ensured that sufficient useful road condition 

information can be extracted in each time interval and the recognition results can meet real-time performance 

and reduce frequent shifting phenomena. A time interval of 120 seconds will be selected to extract data from the 

4418 second comprehensive driving condition [17]. 

After completing the above work, the recognition program of the K-means driving condition clustering is 

wrote by the MATLAB soft. The comprehensive driving conditions are identified at intervals of 120 seconds for 

each driving condition. The congestion driving condition, urban driving condition, fast speed operating 

conditions and high-speed operating conditions are respectively represented by 1, 2, 3, and 4 in the identification 

results. Recognition results and the recognition errors of the comprehensive driving condition are shown in 

Figure 3 and Figure 4 which is recognized by the K-means clustering method. 
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Fig. 3. Driving condition recognition result based on K-means clustering 
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Although the recognition rate of K-means clustering recognition method is faster for comprehensive driving 

conditions, it can be seen from the figure that there are some errors in the identification of driving conditions. 

Compared with actual requirements, the accuracy of driving condition recognition is low and maintained above 

60%. In order to optimize the accuracy of driving condition recognition, the following will propose a better 

method to recognize vehicle driving conditions. 
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Fig. 4. Driving condition recognition error based on K-means. 

IV. ESTABLISHMENT AND VERIFICATION OF BPNN DRIVING CONDITION RECOGNITION 

MODEL 

In order to further improve the accuracy of driving condition recognition, the method of BP neural network 

will be used to identify the comprehensive driving conditions. The basic idea of the BP neural network 

algorithm is that the learning process includes two stages of signal feed forward propagation and error feed 

forward propagation. It is roughly composed of input layer, hidden layer and output layer. The hidden layer can 

be composed of multiple layers [18-19]. In the phase of signal forward propagation, the input signal starts from 

the input layer and is transmitted layer by layer to the output layer. If the actual output signal is inconsistent with 

the expected output signal, the algorithm will move to the error feed forward propagation stage. The error is 

transmitted from the output layer to the input layer and distributed to all units in each layer. The error signal is 

the basis for correcting unit weights and deviations [20]. Figure 5 shows the topological structure of BPNN. 

X1

X2

  

Xn

Ym

  

Y1

Input layer Output layerHidden layer
 

Fig. 5. BPNN topology. 

As can be seen from the above figure, the BPNN is similar to a non-linear function. The input of the input 

layer is regarded as the independent variable, the output of the output layer is regarded as the dependent variable, 

and the hidden layer is regarded as the mapping relationship between the independent variable and the 

dependent variable [21]. 
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(1) Network initialization. According to the number of selected feature parameters, set the input layer neuron to 

.n  hidden layer neuron to ,l  and output layer neuron to m.  In this step, the weights and thresholds of 

each layer are initialized. The neuron activation function uses the default function ( ) 1/ (1 ),
x

f x e


   x  is 

the input signal of each neuron in the input layer. 

(2) Use formula as in (3) to calculate the output of the hidden layer. 

1

( )
n

j ij j

i

H f a


     1,2,...,j l                               (3) 

Where, jH  is the output of each hidden layer neuron, ja  is the threshold of each hidden layer neuron, and 

ij is the weight between the input layer neuron and the hidden layer neuron. 

(3) Use formula as in (4) to calculate the output of the output layer. 

1

l

p j jp p

j

O H b


     1 , 2 , . . . ,p m                         (4) 

Where, pO  is the output of each output layer neuron, pb  is the threshold of each output layer neuron, and 

jp  is the weight between the hidden layer neuron and the output layer neuron. 

(4) Calculate the network output error by formula as in (5). 

p p p
E Q O                                       (5) 

(5) Update weights and thresholds by the formulas as in (6) and (7). 

1

(1 ) ( )
m

ij ij j j jp p

p

LH H x i E


                             (6) 

jp jp j p jpLH E                                               (7) 

The L  in the above formula represents the learning rate of the network, and the default value of the network 

is 0.01. 

(6) If the actual output does not meet the expected output or does not meet the preset iteration stop standard, 

return to the second step to continue this cycle. 

Through the above analysis, the program of BPNN driving condition recognition is established by MATLAB. 

Before driving condition training of BPNN, it is necessary to determine a suitable training set, which will affect 

the iteration times and training accuracy of BPNN. In this paper, from the selected four representative driving 

conditions, 100 samples are randomly selected according to the time period of 120 seconds to represent each 

type of driving condition, and four characteristic parameter values under 400 samples are selected as the sample 

set for BPNN training, and the selected data are normalized. According to the number of characteristic 

parameters, the input layer neurons of BPNN are determined to be 4; Because the four driving conditions 

represented by the output vector can be transformed into index vectors, one neuron in the output layer is 

determined; Considering that the number of hidden layer neurons will affect the recognition efficiency and 

accuracy of BPNN, the number of hidden layer neurons is determined to be 5. The recognition results and error 

percentage of driving conditions using BPNN are shown in Figure 6 and Figure 7 respectively. 
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Fig. 6. Neural network driving condition recognition result graph. 
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Fig. 7. Percentage graph of neural network driving condition recognition error. 

It can be seen from Figure 6 and Figure 7 that the driving condition recognition based on BPNN takes a little 

longer, and the accuracy of the condition recognition is significantly improved compared with the K-means 

clustering recognition method. Although there are errors in the recognition of some driving conditions, the 

overall recognition accuracy of driving conditions is about 86%, which can meet the needs of the recognition 

accuracy of vehicles in the actual driving process. 

V. ESTABLISHMENT AND VERIFICATION OF INTELLIGENT IDENTIFICATION MODEL FOR 

SECONDARY OPTIMIZATION CONDITIONS 

In order to further improve the accuracy of the BPNN's recognition, the genetic algorithm is used to optimize 

the BPNN, so as to achieve the purpose of improving the driving condition recognition accuracy. Genetic 

algorithm is a method of parallel and random search for the optimal solution of the target formed by simulating 

the mechanism of biological genetic evolution. The genetic algorithm roughly includes three processes which 

are the selection operation, crossover operation and mutation operation [22-23]. Genetic algorithm optimization 

BPNN includes three parts: Confirmation of BPNN structure for driving condition recognition, Genetic 

algorithm optimization of BPNN, and Using optimized BPNN for driving condition recognition and 

classification [24-25]. 

The structure determination of BPNN for driving condition identification is the preparatory work for the 

whole genetic algorithm to optimize BPNN (GA-BPNN). This step is used to determine the individual length of 

genetic algorithm first. According to the selected typical driving conditions, the BPNN has a 4-5-1 structure, 
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that is, it contains four input layer neurons, five hidden layer neurons and one output layer neuron, thus 

determining that the individual length of the population is 4 1 5 1 31.     The following will 

introduce the specific steps of genetic algorithm: 

(1) The genetic algorithm population is initialized according to the individual length. Each individual 

population contains the ownership value and threshold value of the BPNN. Initialize the population to 

generate a specific number of initialized individuals as the initial point of the next iteration. In this process, 

all individuals in the population are encoded by the "real number method" [26]. 

(2) Selection of fitness value. The fitness value function determined according to the weights and thresholds in 

the BPNN can calculate the fitness value of each individual for subsequent selection operations. The 

calculation formula is shown in (8). 

1

( ( ))
n

i i

i

F k abs y o


                           (8) 

Where k  is the coefficient, y  is the expected output, o  is the actual output, and n  is the number of 

nodes. 

(3) Select an action. The proportion of fitness value represents the probability of being selected by each 

individual, and the calculation formula of probability is shown in (9). 

1

/

( / )

i N

j

j

k F
p

k F





                            (9) 

The N  in the above formula represents the population size. 

After determining the probability of the fitness value of each individual, the “roulette” method is used to 

generate a random number between 0 and 1 to determine the number of times each individual is selected. 

(4) Cross operation. The crossover operation is a random process. First, two individuals in the population are 

randomly selected for pairing, and then a certain locus position is randomly selected on each pair of 

individuals as the crossover operation. The specific operation formula is shown in (10). 

(1 )

(1 )

1 1 2

2 1 2

c = p a p a

c = p a p a

    


    
                     (10) 

Where, p  represents the original individual, c represents the new individual, and a  is the crossover 

probability. 

(5) Mutation operation. Perform mutation operation on the thj  gene ija  of the thi   individual, as shown 

in (11). 

2

max 2 max

2

min 2 max

( ) (1 / ) 0.5

( ) (1 / ) 0.5

ij ij

ij

ij ij

a a a r g G r
a

a a a r g G r

     
 

    

                (11) 

Where maxa  and mina respectively represent the upper and lower limits of gene ,a  G  represents the 

number of evolution, and r  represents a random number between 0 and 1.  
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Fig. 8. Recognition process of the optimized BPNN's driving condition based on Genetic Algorithm. 

After the above analysis of the genetic algorithm, it is determined that the driving condition identification 

process based on the genetic algorithm to optimize the BPNN is shown in Figure 8. 

According to the Figure 8, the genetic algorithm optimization program was written by the MATLAB software 

and embedded into the design BPNN. Based on the GA-BPNN model, the driving condition recognition results 

and the driving condition recognition error percentage are shown in Figure 9 and Figure 10. 
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Fig. 9. Recognition results of neural network driving conditions based on genetic algorithm. 
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Fig. 10. Percentage of driving condition recognition error. 

When the genetic algorithm iterated to the nineteenth time, the GA-BPNN is completed. It can be seen from 

the above figure that the GA-BPNN algorithm has further improved the recognition accuracy of driving 

conditions, which can reach about 93%. Therefore, the GA-BPNN driving condition identification model can 

meet the needs of identifying the actual road conditions during driving. 

VI. CONCLUSION 

In this paper, the principal component analysis method is used to reduce the nine characteristic parameters of 

the driving condition. Four representative characteristic parameters of maximum driving speed, maximum 

acceleration, average acceleration and average deceleration are selected, and the K-means clustering method is 

used to construct the comprehensive driving condition. K-means clustering identification method, BPNN 

intelligent identification method and GA-BPNN intelligent identification method are used to establish 

corresponding driving condition identification models, and verify the accuracy of driving condition 

identification models under comprehensive driving conditions. Through the simulation and comparison analysis 

of the three driving conditions identification modeling results, the following conclusions are obtained: 

(1) Compared with the K-means recognition method, the BPNN driving condition recognition method has a 

greater improvement in accuracy. 

(2) Although the accuracy of BPNN recognition is slightly improved, the accuracy of the GA-BPNN 

recognition has the highest accuracy. 

(3) The BPNN identification mistakenly identifies the urban driving condition as the congestion condition, and 

the GA-BPNN can realize the correct identification of the driving condition. 
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