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Abstract – At present, Many longitudinal speed tracking controllers of smart cars adopt the PID control algorithm. 

The PID controller’s advantages of simple structure and easy reality are widely applied in industry. With the 

advantages of simple structure and easy reality, the controller is widely used in industry. But like most traditional 

controls, PID controllers do not apply to nonlinear-and time-varying systems, and can only be used for a fixed control 

object. The parameters of PID controllers need to be readjusted when the control objects are changed. In order to 

solve the problem, the paper uses a multi-layer feed forward neural network to adjust the PID parameters according 

to the different control objects, and makes it adaptive for a time-varying nonlinear longitudinal speed control system. 

The designed controller is verified by the matlab and carsim soft. It shows that the controller keeps the vehicle 

tracking error only within 0.05-0.06m/s, and the control system can respond quickly and achieve stability within 2 

seconds when a signal mutation occurs. Thus, the effectiveness of the designed algorithm is demonstrated. 

Keywords – BP Neural Network, Longitudinal Speed, Tracking, Incremental PID, Intelligent Vehicle. 

I. INTRODUCTION 

Unmanned driving technology covers environment perception, positioning, decision-making and planning, 

and control. The control part is divided into horizontal and vertical control. The mutual influence of the two 

control parts determines the final running posture of the vehicle. It is one of the key technologies in unmanned 

driving technology. At present, many scholars and research institutions have carried out a series of researches on 

the longitudinal tracking control of unmanned vehicles. Jingjing Zhou [1] et al proposed an improved 

calculation of IPSO-MPC that combines particle swarm and model prediction. This algorithm is due to the 

introduction of inertia factors. So that the particles will not oscillate near the global optimal solution and the 

algorithm can converge due to the introduction of the shrinkage factor. It is verified by simulation that this 

algorithm effectively reduces the number of iterations and the calculation cost, and the tracking deviation of the 

speed is also small and meets the requirements. Zenghui Zhu [2] et al. used fuzzy control algorithms to design 

the controllers of the throttle and braking system separately according to the large lag, time-varying and 

nonlinear characteristics of traditional fuel vehicles, and the simulation verified that they can meet the tracking 

control of different accelerations. Wai-lok [3] uses a fuzzy radial basis algorithm to control the speed of the 

vehicle so that the vehicle keeps a certain distance from the drag. The advantage of this algorithm is that it does 

not require data training. Experiments have verified the effectiveness of this algorithm. Speed has better tracking 

effect. In addition, some scholars use model predictive control [4-5], particle swarm [6-8], synovial membrane 

control [7], fuzzy control [10-13], generalized predictive control algorithm, genetic algorithm [14-16], and other 
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algorithms for tracking control of longitudinal speed. STANLEY, who participated in the DARPA Ground 

Challenge in 2005, used simple PI control. PID controller has always been the most widely used and most 

mature controller in the industry because of its simple structure, easy implementation and strong robustness. 

Although there are many new controllers emerging in the control field, PID still occupies a dominant position. 

In fact, the PID control law is a linear control law, and it also has the weakness that the traditional control theory 

is not suitable for uncertain systems, nonlinear systems, time-varying systems, and multivariable systems. It has 

more advantages in simple single-variable control systems. Good control effect, but poor effect in the control of 

complex systems. With the development of intelligent algorithm theory, many experts and scholars have begun 

to combine intelligent algorithm with PID algorithm to make it have the function of automatic diagnosis and 

improve the function of the control system. As we all know, the intelligent vehicle longitudinal control system is 

a time-varying, non-linear system. The PID algorithm is applied to the longitudinal control. It is necessary to 

adjust the PID parameters in real time to ensure the requirements of system control accuracy and ensure the 

safety of driving. 

II. THE DESIGN OF BP NETWORK ADAPTIVE ADJUSTMENT INCREMENTAL PID 

CONTROLLER 

BP neural network is a kind of multi-layer feed forward neural network. Its main feature is the forward 

transmission of signals and the backward propagation of errors. The essence of BP neural network is a non-

linear system, which has the ability to approximate arbitrary functions, and has strong information synthesis 

capabilities. It can process system information that is difficult to describe with models or rules. BP neural 

network is processing automatic systems that require high real-time performance. Control problems have great 

advantages. In recent years, with the continuous development and maturity of neural networks, intelligent 

control systems based on neural networks have received special attention in system identification, modeling, and 

adaptive control, especially its better it solves the modeling and control problems of complex systems with 

uncertainty, severe nonlinearity, time-varying and hysteresis [17]. Neural network has the advantages of high 

parallelism, high nonlinearity, good fault tolerance, self-learning, self-adaptive, and associative memory 

function. Therefore, the combination of BP neural network and PID is adopted. Through the self-learning 

adjustment of the weight coefficients of the network, the parameters of the PID controller are automatically 

adjusted to adapt to the nonlinear longitudinal speed tracking model and accurately track the time-varying 

desired speed. 

PID control is based on the deviation e(t) between the given value and the actual output value to perform the 

proportional integral derivative operation and add the results to obtain the control output u(t). The expression of 

the PID algorithm in the continuous time domain is: 

0
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i
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u t k e t e t dt T
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                                   (1) 

Where:
pk is the proportional coefficient, iT  is the integral time constant, and dT  is the derivative time 

constant. 

Discretize formula 1.1, use a series of sampling moments to represent the continuous time t, replace the 

integral with the sum, and replace the differential with the increment. 
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Where: 
pk is the proportional coefficient, 

ik is the integral coefficient, /i p ik k T ; 
d p dk k T ; ( )u k  is the 

output value of the controller at the kth sampling time; ( )e k is the kth sampling time Enter the deviation of the 

control system; ( 1)e k   is the deviation value of the control system at the (k-1) th sampling time; T is the 

sampling period. 

The incremental PID control algorithm is introduced from formula 1.5, according to the recursive principle: 
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Subtract 1.6 from 1.5 to get the expression of the incremental PID control algorithm: 

( ) [ ( ) ( 1)] ( ) [ ( ) 2 ( 1) ( 2)]p i du k k e k e k k e k k e k e k e k          ( ) ( ) ( 2 ) ( 1) ( 2)p i d p d dk k k e k k k e k k e k            (7) 

( ) ( 1) ( )u k u k u k                                  (8) 

In the incremental control, there is no need for accumulation, and the determination of the control increment 

is only related to the last three sampling values, so it is easier to obtain a better control effect through weighting. 

The structure of PID control system based on BP neural network is shown in Figure 1. It is mainly composed 

of incremental PID, bp neural network and controlled system. The incremental PID controller directly performs 

closed-loop feedback control on the controlled system, and the neural network adjusts the three parameters of 

PID in real time according to the operating status of the system. 

 

Fig. 1. The structure diagram of the BP neural network PID control system. 

Figure 2 is the structure diagram of the bp neural network, where x1, x2…xn, are the input values of the bp 

neural network, in this article are the expected input and the actual output of the control system, Y1, Y2…Ym are 

the output values of the neural network, in the article the three parameters kp ki kd for pid, wij and wji  are the 

weights of the BP neural network. In this way, the bp neural network can express the function mapping 

relationship from the expected input of 2 independent variables and the actual output to the 4 dependent 

variables kp, ki, kd, u. 
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( ) ( ( 1), , , , ( ), ( 1), ( 2))p i du k f u k k k k e k e k e k                  (9) 

The f relationship is a non-linear function mapping relationship, and BP neural network can be used to find 

an optimal control law. 

 

Fig. 2. BP neural network structure diagram. 

This article uses a three-layer neural network, the input layer is 

(1) ( )( 1, 2,..., )JO X j j n                                  (10) 

Where n  depends on the number of inputs 

Input to the hidden layer of the network: 

(2) (2) (1)
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The output of the hidden layer is: 

(2) 2( ) ( ( ))( 1, 2,3,..., )i iO k f net k i w                                       (12) 

Among them: 
(2)

ijw is the weighting coefficient of the hidden layer, and the superscripts (1), (2), (3) are the 

output layer, hidden layer and output layer. 

The input of the output layer of the neural network is:  
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Output of the output layer: 
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The activation function of the hidden layer neuron is the Signoid function. 
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The activation function of the hidden layer neuron is a non-negative Signoid function. 

( )
x

x x

e
g x

e e



            (19) 

The performance index is: 

21
( ) ( ( ) ( ))

2
E k rink k yout k            (20) 

Adjust the weight coefficient of the network according to the gradient descent method, that is, search and 

adjust the negative direction of the weight coefficient according to E(k), and add a very small inertia term that 

makes the search quickly converge to the global. 
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In the formula: η is the learning rate;  is the inertia coefficient 

k) k)
(3) (3)

(3) (3) (3) (3)

( ) ( )( ( ( ) ( )

( ) ( ) ( ) ( )

l l

ij l l ij

O k net kE E y k u k

y k u k O k net k 

    
    
    

       (22) 

(3)

(2)

(3)

( )
( )

( )

l

i

li

net k
O k

k





                                       (23) 

From the above formula, the following relationship can be obtained: 
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The weight learning algorithm of the output layer of the neural network is as follows: 
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among them 

' ( ) ( )(1 ( ))g g x g x              (29) 

' 2( ) (1 ( )) / 2f f x              (30) 

The learning algorithm of the hidden layer weight coefficient is as follows: 

(2) (2) (2) (1)( ) ( 1) ( )ij ij l jk a k O k                (31) 
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3
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Where  is the learning rate and  is the inertia coefficient. 

The main steps based on this algorithm are as follows: 

(1) Determine the structure of the neural network, given the weighted initial value of each layer, as well as the 

learning rate   and the inertia coefficient α, , the value is 1 at this time. 

(2) Sampling to get rink(k) and yout(k), calculate e(k); 

(3) Calculate the input and output of each layer, and get the output output ,pk ik , dk  

(4) Calculate the output of the incremental PID controller: 

( ) ( 1) ( )u k u k u k   ( ) ( ( ) ( 1) ( ) ( ( ) 2 ( 1) ( 2))p i du k k e k e k k e k k e k e k e k           

(5) Perform neural network learning and adjust the weighting coefficient online 
(1) ( )ij k and (2) ( ).li k  

(6) Order k = k+1 

(7) Return to step (1) 

The above is the algorithm of BP neural network for adaptive adjustment of PID parameters. If this algorithm 

is programmed as a .m file in matlab, the controlled object will be relatively fixed, which is not suitable for 

generalized modeling and simulation. According to the literature [18], the program is rewritten into an s-

function file. The s-function file makes this algorithm highly portable, and its use is not limited to fixed objects. 

Then put it into the simulink model for the simulation verification of the longitudinal speed. 

III. LONGITUDINAL SPEED TRACKING 

The essence of longitudinal speed tracking control is that smart cars use cameras, lidars, millimeter-wave 

radars, etc. to perceive external environmental information, and then the planning decision-making layer makes 

a reasonable trajectory and speed plan, and the lower executive layer gives the decision-making layer according 

to the planning decision-making layer. The tracking control is carried out with a predetermined signal to ensure 

the accuracy of tracking and meet the requirements of normal driving of the vehicle. The focus of this paper is 

the effect of the BP neural network self-adjusting PID parameter control algorithm used in the longitudinal 

speed tracking control of the smart car. Therefore, this article no longer conducts longitudinal dynamics analysis 

for modeling, but uses the vehicle dynamics model that comes with carsim to conduct joint simulation 

experiments with simulink. The longitudinal control of unmanned driving is to control the vehicle to drive at a 

desired speed to achieve a safe driving distance between vehicles or to complete actions such as changing lanes 

and overtaking. According to the structure of the transmission system, it is actually achieved by controlling the 

torque, speed and pressure of the brake master cylinder of the vehicle's engine. 

According to the requirements of a human driver when driving, the throttle and brake cannot work at the same 

time, and the throttle control amount and the brake master cylinder pressure cannot be changed arbitrarily in 

order to meet the speed accuracy due to the limitation of the executive structure. Therefore, this paper designs 
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the switching logic rules for driving and braking. The acceleration is used as the control variable for whether the 

vehicle adopts the driving or braking mode. When the acceleration is greater than zero, drive is used, and when 

the acceleration is less than zero, the brake mode is used. Taking into account the limitations of the mechanism, 

the maximum threshold of throttle opening is set to 1, and the maximum threshold of master cylinder pressure is 

set to 9. 

Before carrying out the simulation experiment of longitudinal speed tracking control, first use a nonlinear 

model to test the control effect of the set PID controller based on bp neural network with adaptive adjustment 

parameters. The controlled object is: 

0.1

2

1.2(1 0.8 ) ( 1)
( ) ( )

1 ( 1)

t

Te y t
y t u t

y t



 
 

 

 among them, T is the sampling period, 

and this article takes T = 0.001s. The input signal is shown in Figure 3 below. The tracking result after BP 

neural network PID control algorithm control is shown in Figure 4. It can be seen from the figure that the target 

signal and the output signal basically coincide. The part of Figure 4 is enlarged as shown in Figure 5, and it can 

be seen that in 1s when the target signal has a sudden change from 0 to 6, the output signal tracks the target 

signal in a very short time and there is no overshoot. The process of adaptive adjustment of PID parameters is 

shown in Figure 6. It shows that the PID controller based on BP neural network's adaptive adjustment 

parameters has better control effect for this nonlinear control object. 

 

Fig. 3. Input signal. 

 

Fig. 4. Tracking effect diagram. 
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Fig. 5. Enlarged view of tracking effect. 

 

Fig. 6. PID parameter adjustment diagram. 

The BP-PID controller is transplanted to the speed tracking control system for simulation verification. The 

block diagram of the speed tracking control system is shown in Figure 7. This longitudinal speed tracking 

system is composed of a desired speed composed of multi-step step signals, a BP neural network PID controller, 

a brake throttle logic switching module and a carsim vehicle dynamics model. Among them, the selected model 

is a Type C car with rear-wheel drive and front-wheel steering, which is used to realize the joint simulation of 

matlab and carsim to verify the effectiveness of this algorithm in longitudinal speed tracking. 

Set the desired speed as shown in Figure 8 as a continuously changing step signal. The BP neural network 

PID transmits the desired acceleration of the control variable to the throttle brake switching logic to obtain the 

corresponding input throttle opening and brake master cylinder in Carsim pressure. The corresponding tracking 

results are shown in Figure 9, where the black solid line represents the desired speed, and the red dashed line 

represents the actual tracking speed. It can be seen from the figure that the actual speed and the expected speed 

basically coincide. In order to further observe the difference between the two, the error diagram between the 

actual speed and the expected speed in Figure 10 is obtained. As shown in the figure, the error value is basically 

at the zero line. Above, it shows that the tracking effect is better, but in the figure you will find that the error 

will suddenly change to zero value at a certain moment. This is because there is a sudden change in the speed at 

a certain moment, and the controller changes the original control amount, and it takes a certain time for the 
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control system to respond. The shorter the sudden change, the faster the system responds and the better the real-

time performance. In the partial enlarged view of Fig. 11, it can be clearly seen that the speed changes from 0 to 

3. Basically, the system can accurately track in place within 2 seconds without overshooting. 

 

Fig. 7. Block diagram of Longitudinal Speed Tracking Control System. 

 

Fig. 8. The speed of the target. 

 

Fig. 9. Longitudinal velocity tracking results. 
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Fig. 10. Error graph. 

 

Fig. 11. Partially enlarged view. 

 

Fig. 12. Maximum error. 

In order to better verify whether this algorithm can meet the requirements of actual driving conditions, the 

speed data of the first 500 seconds of the FTP75 cycle is used as the expected input of the simulation. Figure 13 

shows the FTP75 cycle working condition, and the simulation results are shown in Figure 14. It can be seen that 

the tracking results basically coincide with the expectations, and the tracking effect is good. This algorithm can 

basically meet the needs of the actual scene. 
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Fig. 13. FTP75 cycle conditions. 

 

Fig. 14. Tracking result graph. 

IV. CONCLUSION 

The paper analyzes the control rules of the BP neural network and incremental PID, designs the PID control 

algorithm of BP neural network for longitudinal speed control, and uses a non-linear system of fixed control 

objects to verify the control effect of this controller. Simulation results show that the three Kp Ki Kd parameters 

of PID controller can be adjusted in real time according to the state of the system, the actual speed basically 

coincides with the desired speed, and the control effect is good. This controller is transplanted to the 

longitudinal speed tracking system and simulated by the matlab and carsim soft. Results show that the controller 

of this algorithm allows the longitudinal speed tracking control system to respond quickly and can track the 

desired speed within 2 seconds. If the tracking error is ignored during speed mutation, the maximum tracking 

error of the longitudinal speed tracking control system is between 0.05-0.06m/s, and the control accuracy is 

higher. Finally, the FTP75 cycle working condition is used for the simulation verification of the actual 

application working condition. Results show that based on adaptive adjustment of BP neural network, the 

control algorithm is well and can be applied to the longitudinal speed tracking control system. 
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