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Abstract – This paper gives an overview of the popular Subspace based Direction of Arrival (DOA) estimation 

techniques. Modern DOA estimation algorithms are based on subspace techniques. Subspace methods operate on a 

reduced parameter space by Eigen decomposition of the observed signal covariance matrix into two orthogonal spaces, 

the signal and noise subspaces and estimates the angles from one of these spaces. Subspace based DOA estimation 

techniques include; Multiple Signal Classification (MUSIC), Estimation of Signal Parameters via Rotational Invariance 

Technique (ESPRIT) and Unitary ESPRIT.  These algorithms were originally formulated for single arrays. This paper 

extends their application to a bistatic MIMO (Multiple Input Multiple Output) radar system that have both a 

transmitting and a receiving array that are far apart. Performance comparison is made between the subspace based 

MUSIC algorithm and the spectral search based capon beam former using Matlab simulations. Several other Matlab 

simulations were run to demonstrate the application of ESPRIT and UNITARY ESPRIT algorithms on a bistatic 

MIMO System to estimate the Direction of Departure (DOD) and the Direction of Arrival (DOA) angles, the results 

showed how reduction in parameter space using subspace techniques reduces computational complexity and improves 

angle estimation resolution and accuracy. 

Keywords – Bistatic MIMO Radar, Direction of Arrival, ESPRIT Algorithm, MUSIC Algorithm, Covariance Matrix.  

I. INTRODUCTION 

Direction of arrival estimation of propagating signals constitutes a critical part of a wide range of engineering 

applications such as radar, sonar, environmental monitoring, public security, search and rescue, medical diagnosis, 

wireless communication, seismology and geophysics. Useful information carried by the propagating waves are 

retrieved through sensor arrays. A wide variety of Direction of arrival estimation algorithms that cuts across these 

application areas include Maximum likelihood techniques, the capon beam former and the subspace algorithms: 

Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT) and Multiple Signal 

Classification (MUSIC).  

In array signal processing, an array of sensors, spatially distributed with respect to a reference sensor, spatially 

samples the amplitude and phase modified transmitted signals arriving at the array aperture. The output of the 

sensors consists of the desired signals corrupted by additive noise such as thermal noise as well as unwanted 

signals within the environment of the array aperture. Due to propagation delay, the signal at the output of each 

sensor element becomes a time advanced or time delayed version of the signal at the reference element [1]. 

Direction of arrival, which is one of the parameters that can be extracted from the received signals, is estimated 

from the delays between the elements of the array. The more spatial samples, that is, the number of elements in 

the array, the better the angle estimation resolution and detection capabilities.  

There are several methods to Angle estimation. Some of the methods perform well in array geometries such as 

uniform linear arrays (ULAs), uniform circular arrays (UCAs) and uniform rectangular arrays (URAs). One of 

the earliest techniques of angle estimation is beamforming. Spectral estimation techniques like the capon method 
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were also used, but these techniques cannot estimate angles for closely spaced arrival angles for low signal-to-

noise ratios (SNRs). Maximum Likelihood (ML) methods have been shown to have better performance among 

earlier classic angle estimation methods applicable to arbitrary geometries [2]. But this method has no closed form 

solution but instead it is iterative and a computationally demanding search is required.  

Recent research activity on angle estimation has focused on the use of subspace techniques for their ability to 

reduce the parameter space and correspondingly the computational complexity. Subspace methods operate on a 

reduced parameter space by eigen decomposition of the observed signal covariance matrix into two orthogonal 

spaces, the signal and noise subspaces and estimates the angles from one of these spaces. In bistatic MIMO, the 

arrays are spaced far away from each other and the Direction-of-Departure (DOD) and Direction-of-Arrival (DOA) 

are different. Spatial synchronization in angle becomes a problem. In conventional bistatic radar, DOD/DOA 

synchronization is achieved by the transmitting beam and the receiving beam illuminating the target 

simultaneously. In [3] the subspace based ESPRIT algorithm is applied to bistatic MIMO radar by exploiting the 

dual invariance property of the transmitting and receiving arrays. This produces two rotational matrices whose 

eigenvalues correspond to the DODs and DOAs. But an additional pairing algorithm to match the DODs to the 

DOAs is required. For uniformly spaced antennas, Bencheikh et al [4] developed a combination of esprit and root 

MUSIC formulation to achieve automatic pairing of the angles and also avoids an exhaustive 2D MUSIC search 

to determine the DODs and DOAs. Target localization for bistatic MIMO based on subspace techniques is studied 

in [5], [6], [7], [8], [9]. Based on Lee’s pioneering work on centro-hermitian matrices in converting a complex 

matrix to a real matrix using a Unitary transform [10]. Hardt and Nossek [11], and in reference [12] this transform 

is applied to the ESPRIT algorithm to develop the Unitary ESPRIT algorithm and its variants for multidimensional 

arrays. In [13], the Unitary ESPRIT algorithm is applied to the bistatic MIMO radar system exploiting the dual 

invariance and centrosymmetry of the bistatic MIMO radar system to provide real valued computations and 

automatically paired Directions of Departures (DOD) and Directions of Arrival (DOA) estimates. In all these 

studies, reduction in algorithm complexity and pairing has been achieved in different ways. 

The rest of the paper is organized as follows: The classical approach to Angle estimation is presented in section 

II; in section III, we apply the classical angle estimation algorithms to a bistatic MIMO radar system; The Cramer 

Rao Bound for a bistatic MIMO is derived in section IV. Several Numerical examples based on Monte Carlo 

Simulations are presented and discussed in section V; and finally some conclusions are made in section VI.  

Notation: (∙)H, (∙)T, (∙)*, (∙)-1 denote  Hemitian transpose, transpose, complex conjugation without transposition 

and inverse respectively. diag(∙) denotes the diagonalization operation. Vec(∙) denotes a matrix operation that  

stacks the columns of a matrix under each other to form a new vector. We make use of the matlab expression 

A(m,n) to denote the elements of a (M×N) matrix A.  denotes the kronecker product. 

II. SIGNAL MODEL FOR A BISTATIC MIMO RADAR SYSTEM 

Consider a narrowband bistatic MIMO radar system consisting of M and N half - wavelength spaced 

omnidirectional antennas for the transmitting and receiving arrays respectively as shown in Fig 1. Assume both 

arrays are uniform linear arrays (ULA) and for sake of simplicity and clarity, we use a simple model with P 

uncorrelated targets with different doppler frequencies in the same range bin. All targets are in the far field of the 

transmitting and receiving arrays. Consider also that the target Radar Cross Section (RCS) is constant during a 

pulse period but fluctuates from pulse to pulse. This target model is a classical swerling case II model. The 
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directions of the pth target with respect to the transmit array normal and receive array normal are denoted by θp 

(DOD) and ϕp (DOA) respectively. The transmitted waveforms are M orthogonal signals with identical bandwidth 

and centre frequency. 

 

                    Fig. 1. Bistatic MIMO Configuration. 

The coded signal of the mth transmit antenna within one repetition interval is denoted by 1 L
m C s . Where, L 

denotes the length of the coding sequence within one repetition interval. For a radar system that uses K periodic 

pulse trains to temporally sample the signal environment, the received signals of the kth pulse at the receiver array 

through reflections of the P targets can be written as [14], [15], [16],  
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Where, p denotes the RCS of the pth target and dpf denotes the Doppler frequency of the pth target. 𝒂𝑟 (∅𝑝) = 

[1, 𝑒𝑗𝑟𝑝 , 𝑒𝑗2𝑟𝑝 … . . 𝑒𝑗(𝑁−1)𝑟𝑝]T and 𝒂𝑡 (𝜃𝑝) = [1, 𝑒𝑗𝑢𝑝 , 𝑒𝑗2𝑢𝑝 … . . 𝑒𝑗(𝑀−1)𝑢𝑝]T are the receive and transmit steering 

vectors respectively, rp = π sin ϕp and up = π sin θp. kt  denotes the slow time, k the slow time index and K the 

number of pulses or repetition intervals. Using the orthogonality property of the transmitted waveforms, ( 0i j s s

and
2

1i s , 1.........i j M  ), the output of the matched filters with the mth transmitted baseband signal can be 

expressed as 
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The data matrix in Equation (2) is usually vectorized by stacking the columns of ( )m ktY . Let 1( ) MN
kt C z be 

the output of all the received signal. 

1( ) ( ),..........., ( )
T

T T
k k M kt t t 

 
z Y Y                                                                                                                         (3) 

( ) ( ) ( )k k kt t t z As n                                                                                                                                     (4) 
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Where    1 1( ) ,............, ( )r t r p t p      
 

A a a a a is the MN×P steering matrix. ( ) vec( ( ))k m kt tn V  is the 

additive white Gaussian noise of zero mean and covariance, 2
MN I  after match filtering and 

MNI is a MN MN  

identity matrix. s (𝑡𝑘) = r (𝑡𝑘) [𝛽1 𝑒𝑗 2 𝜋 𝑓𝑑1𝑡𝑘  𝑒𝑗𝜑1 … … 𝛽
𝑃𝑒𝑗 2 𝜋𝑓𝑑𝑃𝑡𝑘 𝑒𝑗𝜑𝑃 ]T. The covariance matrix for K snapshots 

of  tz is estimated by     
K

H

t=1

1
t t

K
 zR z z , where  

H
 represents the Hermitian transpose. 

H H
z s s s no no no R E E E E                                                                                                                                 (5) 

A. 2D-MUSIC and 2D-Capon 

We formulate the 2D-MUSIC and 2D-Capon spatial spectrum functions [17], [18], [19], 20] as  

 
       
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   
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       r t no r ta a E E a a

                                                                               (6) 

 
       1

1
capon H

P θ,
   


       r t z r ta a R a a

                                                                                     (7) 

Eno is the noise subspace involving the eigenvectors corresponding to the last MN–P eigenvalues by eigen 

decomposition of Rz. The DODs and DOAs of the targets can be obtained by a two-dimensional search, which is 

computationally very intensive.  

B. Unitary ESPRIT for Bistatic MIMO Radar 

In this part, we apply an angle estimation algorithm for a bistatic MIMO radar system based on Unitary ESPRIT 

techniques. This algorithm exploits the dual invariance in distinct directions and centrosymmetry of the bistatic 

MIMO radar system to provide real valued computations and automatically paired Directions of Departures (DOD) 

and Directions of Arrival (DOA) [13]. 

The dual invariance property of the transmitting and receiving arrays is exploited to produce two rotational 

matrices whose eigenvalues correspond to the DODs and DOAs.  

Let and p pju jr

p pT e R e  , then  t p a [1, 𝑇𝑝, 𝑇𝑝
2 … … 𝑇𝑝

𝑀−1]T and  r p a [1, 𝑅𝑝, 𝑅𝑝
2 … … 𝑅𝑝

𝑁−1]T. 

Each column of the matrix, A in equation (4) corresponds to a MN element virtual array for the pth target. 

   :, ( )r p t pp  A a a=                                                                                                                       (8) 

1 1 1 1 1 1[1, ,..., , , ,..., ,..., , ,..., ]M M N N N M T
p p p p p p p p p p p pT T R R T R T R R T R T       

Exploring, the structure of this MN element virtual array manifold, the two pairs of selection matrices for both 

the transmitting and receiving arrays must be chosen to be centrosymmetric with respect to one another. The 

maximum overlap subarrays consisting of the first and last M-1 elements of the transmit array steering vectors, 

 t pa in the complete MN virtual array occurs N times. The selection matrices are J1 and J2 both M-1xM-1 

matrices occurring N times 

     1 1 1 1 1N N M M M     
  
 

J I I 0                                                                                                                   (9) 
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     2 1 1 1 1N N M M M     
  
 

J I 0 I                                                                                                                 (10) 

The shift invariance property for the transmit array from the columns of A can be expressed as 

1 2 tJ A J A                                                                                                                                                  (11) 

Where  
1

p

P
ju

t
p

diag e


  . For incoherent signal sources, the columns of Es and A span the same subspace. 

Therefore, using equations (9) to (10),  

1
t t

 T T                                                                                                                                                        (12) 

The DODs are estimated from the eigenvalues of t . Again, looking at the MN element virtual array manifold 

of equation (50), the elements of the receive array steering vectors, ( )r pa  are distributed across the MN virtual 

array in such a way that each element occurs M times in the MN virtual array. Therefore the maximum overlap 

subarrays of the receive steering vectors consists of the first and last M(N-1) of the MN virtual array elements. 

The selection matrices for the receive array are as follows;  

     3 1 1 1M N M N M N M    
 
 

J I 0                                (13) 

     4 1 1 1M N M M N M N    
 
 

J 0 I                                                                                                         (14) 

And the shift invariance equations for the receive array, from which the DOAs can be obtained is expressed as  

3 4 rJ A J A                                                                                                                                                  (15) 

Where  
  1

p

P
jr

r
p
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

 .  Using the same procedure for determining the DODs, The DOAs are determined 

from the eigenvalues of 

1
r r

 T T                                                                                                                                                   (16) 

We then use a unitary transform to map the complex valued virtual array manifold to a real valued one. The 2F 

and 2F+1 unitary matrices are expressed as 
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Where, F  denotes an F x F exchange matrix with ones on its antidiagonal and zeros elsewhere. 

The Unitary transformed virtual array steering matrix is obtained as H
MNG Q A . Similar shift invariance 

equations as in (11) and (15) can be derived for the real valued virtual array manifold G using the same selection 

matrices as derived in equations (9) and (10) for the transmit array and equations (13) and (14) for the receive 

array. The transformed selection matrices and invariance equations are obtained a 
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     1 2 2 21 1
Re ( ) Im ( )H H

MN MNM N M N
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 
 K Q  J  Q K Q  J  Q                                                                         (19) 

1 2t K G K G                                                                                                                                                  (20) 
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 
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  
  The MN P  real valued matrix of signal 

eigenvectors sE  spans the same P dimensional subspace as the MN P  real valued steering matrix G. Therefore 

there exists a nonsingular matrix H of size P P such that s E GH . 

Substituting this in Equations (20) and (22) yields the transformed invariance equations which can be used to 

compute the DODs. And DOAs. 

1 2s t sK E K E                                                                                                                                                  (23) 

3 4s r sK E K E                                                                                                                                                  (24) 

Where 1
t t

 H H  and 1
r r

 H H  . Since both andt r   share the same transform matrix H and are 

also real valued matrices, automatically paired estimates of DODs and DOAs  , , 1p pt r p P can be 

obtained from the real and imaginary parts of the eigenvalues obtained by the eigen decomposition of the complex 

valued matrix                                               

  1
t r t rj j   H H                                                                                                                                (25) 

Where  
1

P

t r p p
j diag 


   , are the eigenvalues. The DODs and DOAs are obtained as 

   ˆ arcsin 2arctan Rep p                                                                                                                        (26) 

   ˆ arcsin 2arctan Im 1p p p P                                                                                           (27) 

III. CRAMER RAO BOUND 

The accuracy of angle estimation is very important. The Cramer Rao bound provides the lower limit on the 

Mean-Square-Error (MSE) that can be achieved by any unbiased estimator. The first step in the derivation of the 

CRB is determining the elements of the Fisher Information Matrix (FIM). The FIM for a Multivariate normal 

distribution of mean, 0  and Covariance, Rz i.e    ( )c

zN R    has elements represented as 

1 1 1
,

1
tr
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z z

m n z z z

m n m n   

     
   
    

R R
J R R R

 
                                                                                          (28) 

Where (.)T denotes transpose and tr(.) denotes the trace of a square matrix. The signal model (4) is a multivariate 

normal distribution of zero mean and covariance Rz where    1H H
z KE R zz zz  is a MN x MN data covariance 
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matrix [17].              
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Where  
T

  , 𝜷 = [𝛽1,……,𝛽𝑝
]T, 𝜽 = [𝜃1,……,𝜃𝑝

]T and 𝜽 = [𝜃1,……,𝜃𝑝
]T the submatrices are derived in 

Appendix A of [24], The variance of individual estimated parameters can be obtained by inverting the FIM 

  1( ) diag CRB J                                                                                                                                     (30) 

The corresponding CRB for joint DOD and DOA for a single target for a bistatic MIMO is given as [21], 
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  

 
  

  


CRB                                          (31) 

IV. NUMERICAL SIMULATIONS 

A. Unitary Esprit and Standard Esprit for Bistatic MIMO 

In this part of the simulations, we evaluate the performance of the Unitary ESPRIT as proposed in [13]. First, 

consider a uniform linear array (ULA) of 3 antennas at the transmitter and 4 antennas at the receiver, both of 

which have a half wavelength spacing between its antennas. There are 8 targets with locations, RCSs and Doppler 

frequencies as shown in table 1. The pulse repetition frequency is 10 kHz. The operating frequency is 30GHz and 

the pulse width is 10µs. The SNR = 10dB. 256 snapshots of the received signal corrupted by a zero mean spatially 

white noise with variance of one were observed. For the purpose of statistical repeatability, 500 Monte Carlo trials 

with a SNR of 10dB were run. 

Table 1. Target Parameters. 

Targets 1 2 3 4 5 6 7 8 

DOD(θ) -20 -50 -10 -40 60 30 40 20 

DOA(ϕ) -40 -20 10 40 0 50 30 -25 

β 1 1 1 1 1 1 1 1 

fd(Hz) 1000 1500 2000 2500 3000 3500 4000 4500 
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Fig. 3. Joint angle estimation for Unitary ESPRIT algorithm for 8 targets over 500 monte carlo trials. 

 

Fig. 4. RMSE of estimation of P = 4 targets versus SNR with M = 8, N = 6, K = 256 for 200 monte carlo trials. 

Fig. 3 shows the targets are localized and paired correctly. Secondly, retaining the same number of antennas 

and spacing as the first simulation we evaluate the performance of the algorithm with 4 targets from angles  1 1, 

= (10°, 20°),  2 2,  = (-8°, 30°),  3 3,  = (0°, 45°)  4 4,   = (50°, 60°) with reflection coefficients β1= β2 = β3 = 
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β4 = 1 and Doppler frequencies fd1 = 1000Hz,  fd2 = 1500 Hz, fd3 = 2500 Hz and f d4 = 3000 Hz. We use the Root 

Mean Square Error (RMSE) performance criterion. The RMSE of the pth target angle estimation is defined as 

   
2 2

1

ˆ ˆ1RMSE
L

p pl p pl p

l
L

   


     where, L is the Monte Carlo trial number, ˆ ˆand pl pl   are the 

estimates at the 
thl iteration, and p p  are true values. The number of samples is K = 256 and SNRs were varied 

from -5 to 30dB. Results are obtained using 200 Monte Carlo simulations. Fig. 4 shows the RMSE versus SNR 

for the 4 targets. The estimation errors are quite negligible.  

Thirdly, we compare the RMSE of target angle estimation of the Unitary ESPRIT algorithm to that of the 

conventional ESPRIT algorithm for a bistatic MIMO radar system. The parameters and simulation conditions are 

the same as the previous simulation. Fig. 5 shows a comparison of the RMSE of the Unitary ESPRIT algorithm 

versus RMSE for the Conventional ESPRIT at different SNRs for one target. The RMSEs for the other targets are 

similar. The Unitary ESPRIT algorithm yields excellent estimates with negligible errors and performs better for 

both low and high SNRs, compared to the conventional ESPRIT algorithm. 

 

Fig. 5. RMSE of estimation versus SNR for M = 8, N = 6, and K = 256 samples for 200 monte carlo trials. 

B. 2D Capon and 2D Music for Bistatic MIMO 

In this part of the simulations, we investigate and compare the performance of the search based 2D Capon and 

2D MUSIC algorithms. The bistatic MIMO radar parameters and configurations are the same as the previous 

simulations in part A. Four targets are located at (DOD, DOA) = (-300, -400), (-500, -200), (100, 100), (-100, 300). 

The number of snapshots K = 256. 10 monte carlo trials were performed at SNRs of 10dB and 30dB. Fig. 6 and 

Fig. 7 show the 2D MUSIC spectrum and 2D capon spectrum at 10dB while Fig. 8 and Fig. 9 shows the spectrums 

at 30dB. With the MUSIC algorithm, a clear spatial spectrum can be seen with targets identified by peaks more 

clearly than the Capon algorithm at a low SNR of 10dB. However, as the number of antennas is decreased, the 

Capon algorithm is able to identify peaks more clearly than the MUSIC algorithm. 
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Fig. 6a. 2D MUSIC at 10dB. 

 

Fig. 6b. 2D MUSIC DOA at 10dB. 

 

Fig. 6c. 2D MUSIC DOD at 10dB. 
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Fig. 7a. 2D Capon at 10dB. 

 

Fig. 7b. 2D Capon DOA at 10dB. 

 

Fig. 7c. 2D Capon DOD at 10dB. 
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Fig. 8. 2D MUSIC Spectrum at 30dB. 

 

Fig. 9. 2D Capon at 30dB. 

 

Fig. 10.  RMSE of MUSIC versus Capon at different SNRs. 



 

Copyright © 2020 IJEIR, All right reserved 

43 

International Journal of Engineering Innovation & Research  

Volume 9, Issue 1, ISSN: 2277 – 5668 

V. CONCLUSIONS 

In this paper, various subspace algorithms were applied to a bistatic MIMO radar system to estimate target 

angles. Both MUSIC and Capon are search based algorithms and are therefore computationally more costly than 

the algebraic methods of ESPRIT and UNITARY ESPRIT. While Capon and ESPRIT work on the signal subspace, 

MUSIC works on the Noise subspace only based on the orthogonality of the steering vectors and the noise 

subspace eigenvectors. The MUSIC algorithm performs poorly for a reduced number of antennas both at the 

transmitting and receiving arrays for low SNRs due to its inability to truly separate the signal subspace from the 

noise subspace. At low SNRs the resolution of the Capon algorithm is very poor; while MUSIC returns clear 

target peaks at the same SNR. Furthermore MUSIC estimates are asymptotically more efficient than the capon 

estimates at different SNRs. The simulation results also show that the Unitary ESPRIT algorithm yields excellent 

estimates with negligible errors and performs better for both low and high SNRs, compared to the conventional 

ESPRIT algorithm. The number of targets that can be detected is increased and there is a lower computational 

complexity as the algorithm uses only real computations. 
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