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Abstract – Partial Factorial experiments such as those proposed by Taguchi to apply in the optimization of 

production processes was successfully employed. Taguchi methodology of experimental design has been employed for 

the evaluation and optimization of ceramic processing. These experimental methods use a much smaller number of 

experiments than traditional full factorial experiments. Simplification as well as advantages and disadvantages of 

Taguchi methods will be discussed. In addition, an example study of the drying of slip-cast compacts, casting, firing, 

and testing of clay-based ceramic will be given as an explanatory example. 
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I. INTRODUCTION 

The traditional method of investigating, the effect of multifactor or multi-parameter response is to 

systematically vary each parameter while simultaneously holding all others constants. The method is very useful 

for exploring how a single parameter influences the response. However, it becomes time-intensive and costly 

when many parameters settings are investigated. For example, analysis of four-parameter system with three 

levels for each parameter requires 81 different experiments (34). Conducting every possible combination for a 

given set of parameters and levels is referred to as full factorial experiment. In one considers that each 

experiment should be performed a number of times to verify that the results are reproducible, it is seen that 

hundreds of experiments may be needed to fully investigate this relatively simple system [1& 2].  

The alternative strategy is known as partial factorial experimental programs, that dramatically decrease the 

required number of experiments [9]. This results in a significant reduction in the volume of information that is 

available and hence a reduction in the overall amount that is learned about the system. However, carefully 

designed experimental programs still yield very valuable data from a rather limited set of experiments [4]. 

  Although a variety of different types of partial factorial experiments are employed in industry, Taguchi 

methods are rarely used. We use Taguchi method of experimental design because it is quite simple to use, it 

employs a minimum number of experiments, and it implicitly includes techniques to examine and decrease the 

variability of the system. The major disadvantage of the method is that it does not handle interactions between 

the parameters in a simple way. This paper only contains a brief explanation of the method along with some 

experimental results, so the reader is directed to references and the bibliography for further details [5].  

II. TAGUCHI METHOD OF EXPERIMENTAL DESIGN 

The Taguchi method of experimental design allows the minimum number of experiments to be performed to 

determine the effects of 3 - 8 independent variables on a response. It is very efficient method that uses a 

polynomial of the highest possible degree in the parameter space to describe how each parameter affects the 

response. In addition, the method meshes very well with Taguchi’s loss function, which associates a cost with 

the response being away from the optimal value regardless of whether the error is due to the process being out 
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of specification or there being uncontrolled variability. However, as with all lightly efficient methods, there are 

a number of problems with this technique that can result in erroneous results, particularly if a high degree of 

precision is required [5-8].  

The first of these problems is that Taguchi method ignores interactions between different parameters. This is 

the result of the assumption that the response is a linear combination of the effects due to each parameter. This is 

shown in equation 1;  

         (1) 

Where ypred is the predicted response, 


y  is the average response of the system, and  iaeff  is the effect of 

parameter a at the ith level. 

These neglected interactions can be divided into synergistic interactions, which result a large response than 

the linear combinations, and anti-synergistic interactions, which result in a lower response. Both cause problems 

in applying the Taguchi method, but anti-synergistic interactions are more problematic.   

The second problem is that Taguchi method frequently determines as many arbitrary parameters as there are 

experimental data points. This results in there being zero-degree freedom in the system of equations that is used 

to calculate the parameter effects. The response surface then describes the response at the combination of values 

of the independent variables that were examined, but it may not describe the response at other combinations. 

This effect can be decreased by including dummy parameters that add experimental conditions without 

increasing the number or arbitrary parameters that have to be determined. This increases the number of degrees 

of freedom in the system and hence includes some aspects of regression analysis to smooth out the effect of 

erroneous data points. 

A third objection to Taguchi method is that the experiments are normally performed in the order in which 

they are listed in the experimental condition matrix, without randomization. This is done because the variables 

that are the most difficult to change and /or control are arranged in this matrix so that they change infrequently. 

This can result in systematic errors if any of the independent variables or the response - measuring apparatus 

drift over time. This is normally accounted for by running calibration experiments at various points in the 

experimental program to detect these changes. Most practitioners of the Taguchi method believe that these 

systematic errors are smaller than the errors introduced by frequent changes of the experimental conditions that 

randomization entails. 

As a result of these problems, the Taguchi method is best suited to screening experiments or fine - tuning of 

systems where there are few, if any, interactions. In these cases, the method is very efficient and very powerful. 

When the Taguchi signal-to-noise function is used to analyze the data, it is possible to obtain much more 

information about the variability of the system and how to control this variability than can be obtained by any 

other method that uses the same number of experimental conditions. 

III. ORTHOGONAL ARRAYS 

Orthogonal arrays are used in the Taguchi method of experimental analysis to ensure that a set of 

experimental parameters is selected that covers the experimental space as uniformly as possible. In addition, the 
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orthogonal array ensures that the effect of each parameter is taken into account the same number of times (in 

most cases) and that each of the parameters is pairwise orthogonal to the others. This pairwise orthogonality 

prevents particular interactions (synergistic or anti-synergistic) from dominating the results [9]. 

A slight complication is that orthogonal arrays only exist for a select number of test conditions. This does 

tend to limit the usefulness of this method to particular numbers of parameters and levels. It is possible to use 

dummy arguments to supplement the parameters and/or levels present, thereby allowing arbitrary quantities of 

either to be examined while maintaining balanced interactions among the parameters. However, there are two 

disadvantages involved with the use of dummy arguments. The first is that more experiments must be performed 

than dictated by the degree of freedom of the system. The second is that the set of experiments may be more 

sensitive to the effects of some parameters than the others, due to the arrangement of the dummy arguments. 

The number of parameters and levels included in some of the more common orthogonal arrays are given in 

Table 1, where it is readily seen that there is a dramatic decrease in the number or required experiments from the 

full factorial experimental procedure [10 & 11]. 

Table 1. Nomenclature of Orthogonal Arrays [1]. 

Name Parameters Levels Combination Possible Required Trials 

L4 3 2 8 4 

L8 7 2 128 8 

L9 4 3 81 9 

L12 11 2 2048 12 

L16 15 2 32768 16 

L'16 5 4 1024 16 

L18 7/1 3/2 4374 18 

IV. SIGNAL / NOISE FUNCTION 

The signal-to-noise (S/N) is frequently used to combine optimization of the response with reduction of the 

variability due to noise. The term S/N originated in the area of electronic circuit design where it was desirable to 

maximize the output of an amplifier for a given power input while minimizing the amount of noise introduced 

into the signal. A result of the electronic origin of the S/N is that the values are normally converted to decibels 

(dB) via a logarithmic transformation, which results in the extreme cases being converted to more manageable 

numbers. However, the concept is applicable to any system where an optimal response is desired with a 

minimum of variability [8]. 

V. LOSS FUNCTION 

Taguchi introduced the concept of a loss function that assigns a cost to any response other than the optimal 

response, as opposed to the traditional approach of only assigning a cost if the process is out of tolerance and the 

part must be scrapped or reworked. The Taguchi loss function, L(y), is given by [9-11];  

   2TyKyL              (2) 

Where y is the measured response, T is the target value, and K is the cost of deviation from the target, which 
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is normally dictated by the cost to scrap a part when the tolerance limits are exceeded, as shown in Figure 1. In 

fact, the Taguchi loss function actually assigns a higher cost to a part that is out of tolerance than the cost to 

scrap it, since a process that has produced one out-of-tolerance part is likely to produce others. 

The Taguchi loss function can be used to extend the concept of signal-to-noise ratio to cases where the 

optimal response is not necessarily the maximum response. This is done by applying a logarithmic 

transformation to the loss function. Since we are normally interested in quantifying a process based upon the 

performance of a number of parts rather than one part, the transformation is applied to the average Taguchi loss 

function for a series of nominally identical parts. A bit of algebraic manipulation results in the Taguchi signal-

to-noise function, , being given by equations 3-6 depending on whether the optimal response is a maximum, a 

minimum, or a target value. In all cases it is optimal to maximize . 

 

Fig. 1. Taguchi Loss Function [1]. 

1. The optimal response being a maximum is referred to as the more-is-better (MB) case, which is appropriate 

for the fracture strength of a structural material. The Taguchi signal - to - noise ratio is: 
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2. When the optimal response is minimum, such as the number of defects in glaze, we have the less - is - better 

(LB) case, where the Taguchi signal -to-noise function is; 
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3. The final case is when a particular target value of the response, such as the thickness of a coatings, is desired, 

which is known as nominal-is-better (NB). There is normally some parameter or scaling factor, such as 

coatings time, that can be adjusted to force the mean to the target. If the variance is dependent of this scaling 

factor, the Taguchi signal-to-noise function is; 

2

101, log10 SyMB              (5) 

Where Sy is the sample variance, if the variance also depends upon the scaling factor, the Taguchi signal-to-

noise function is; 
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
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MB             (6) 

Where: 


y is the mean response of the experimental run. 

VI. EXPERIMENTAL APPROACH 

The utility of Taguchi method will be illustrated using a ceramic processing study. A series of clay bodies 

composed of various fractions of goldart and redart clay. Green bodies were slip cast in acrylic moulds on 

plaster to yield bend bars that were 10 × 15 ×10 mm after drying. These were then fired in air at temperatures 

ranging from 1050 to 1200 °C with a holding time of 0-20 hours. The bend bars were then broken in four-point 

bending to determine the fracture strength, and the density of one portion of each bar was measured using 

Archimedes’ method. The possible experimental parameters are summarized in Table 2. However, any 

combination of four parameters could be used [12-15]. 

Four of those parameters, which are highlighted in Table 2 were selected at three different levels using the 

Taguchi method and an L9 orthogonal array. Once the four variable parameters were selected, a single value of 

each of the other fixed parameters was selected [16].  

Table 2. Possible Parameters to Study. 

Parameter Levels 

Composition (fraction of low-fine clay) 0 – 100% 

Grog (fraction of dry total) 0-40% 

Grog size 0.1 -1 mm 

Solution pH 3 - 11 

Dispersant Concentration 0 – 5 vol% 

Dispersant Type NH3-PAA, NH3-PMAA 

Firing Temperature 1000 – 1200 °C 

Firing Time 0 – 20 hours 

Ramp rate 1 – 20 °C/min 

The objective of this study was to demonstrate how changing the processing of clay body affects the 

properties, so the parameters were chosen to cover a fairly broad range and have reasonably strong and 

hopefully relatively equal effects on the properties. The L9 orthogonal array is shown in Table 3 with the actual 

values of variable parameters. 

The objective of this study was to maximize the strength and minimize the density of the material while 

increasing the reproducibility of the process. As a result, the less-is-better Taguchi signal-to-noise ratio was used 

for the density and the more-is-better was used for the strength. The specific strength could have been computed 

and used as the response to be optimized. A summary of the experimental results is given in Table 4 with the 

best value of each of the four types of response highlighted. It is readily seen that the strongest samples were 

among the most dense, and that the sample with the lowest density was the weakest. 
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Table 3. The L9 Orthogonal Array, Parameters and Levels. 

Expt. # A   Goldart % B   Slip pH C   Hold time (h) D   Ramp rate °C/min 

1 50 7 1 2 

2 50 9 3 8 

3 50 11 9 12 

4 70 7 3 12 

5 70 9 9 2 

6 70 11 1 8 

7 90 7 9 8 

8 90 9 1 12 

9 90 11 3 2 

The results were used to determine the effect of each of the parameters on both of the measured responses. 

This process is demonstrated for the calculation of the effect of parameter C (hold time) at level 2 (3h), known 

as c2 on the strength. 

Table 4. Summary of the Experimental Results. 

Exp. # Strength # Density 

 Mean (MPa) MB  Mean (g/cm3) LB 

1 8 21.46 ± 2.83 27.04 7 2.21 ± 0.08 - 6.52 

2 6 24.01± 2.69 27.14 6 2.71 ± 0.19 -6.75 

3 8 24.09 ± 6.99 28.12 7 2.50 ± 0.15 -7.98 

4 8 26.49 ± 4.12 29.12 7 2.72 ± 0.05 -7.12 

5 8 22.00 ± 4.84 25.62 7 2.81 ± 0.04 -6.77 

6 6 7.52 ± 0.63 16.82 7 1.48 ± 0.04 -5.29 

7 8 19.78 ± 3.07 24.87 7 2.11 ± 0.07 -6.48 

8 8 5.34 ± 1.89 9.86 7 1.68 ± 0.06 -4.53 

9 6 12.83 ± 2.64 22.13 7 2.02 ± 0.03 -6.12 

Mean 17.27 ± 3.8              22.6 Mean 2.10 ± 0.08          -6.40 
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Where y2, y4 and y9 are the responses for the experiments where C was set to level 2. This process extends to 

all four different responses and each of the 12 parameter effects subjected to the constraint that effects of a given 

parameter must sum to zero. 

The effects of different parameters on the strength and MB for the strength are show in Figure 2. It is readily 

that composition and hold time had the largest effect on the strength with the ramp rate having the smallest 
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effect. It is possible to use this information to predict the combination of parameter levels that will result in the 

highest strength by taking the level with the largest positive effect for each of the parameters. The predicted 

maximum strength should be obtained for a sample made of 50% goldart clay at pH 7 that was fired for 3 hours 

using a ramp rate of 2°C/min, although a ramp rate of 12°C/min is predicted to give nearly the same strength. 

This experimental condition is known as a1b1c2d1, and it was not conducted so a confirming experiment must be 

performed. 

Examination of the plot for MB for the strength shows that the effects on this response are very similar to 

those for the actual value of strength, except for parameter D, the ramp rate. In this case the fast ramp rate, 12 

°C/min resulted in a significantly lower MB than a ramp rate of 2°C/min. As a result, the ramp rate should be 

set to 2°C/min rather than 12°C/min, even though both levels are predicted to result in nearly the same strength. 

The effect of the parameters on the density and LB for the density are shown in Figure 3. In this case the 

composition and firing time have the largest effect with the minimum density predicted to occur for the 

experimental condition a3b2c1d2, which was not performed. It is always desirable to maximize the signal-to-

noise ratio  since the formation accounts for the direction in which the response is to be driven. As such the 

experimental condition a3b2c1d2 is predicted to optimize LB as the density.  

Parameter Effects on the strength
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Fig. 2. The parameter effects on the strength (top) and MB (bottom) for the sintered clay body. 

 composition %            solution pH               time (hrs)                rate° C/min 
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Fig. 3. The parameter effects on the density (top) and LB (bottom) for the sintered clay body. 

As stated above, it is necessary to perform confirming experiments to determine if the predicted optimal 

experimental condition is really the optimal experimental condition. In complicated system such as this clay 

product, there are frequently interactions between the parameters that modify the results from those that are 

predicted from simple addition of the parameter effects. The presence of these interactions in this system can be 

verified by calculating the predicted minimum strength, which is negative; a clearly impossible situation. In 

addition, the smaller effects are often at the level of noise, and as such their contribution is not significant. 

Further information on quantifying the significance of the effects can be found in references such as Phadke [4] 

and Ross [5]. It is also good to perform confirming experiments for the second and possibly third-best predicted 

experimental conditions in case the interaction effects make one of these the best condition. 

The results of the confirming experiments are shown in Table 5, where it is seen that there is relatively poor 

argument between the predicted and the measured responses. This result is not really unexpected based upon the 

complexity of the system that was studied and what is known about interactions between the various parameters. 

However, it is seen that responses for the experimental conditions that were predicted to give optimal results 

were among the best responses in most cases, indicating that the parameter interactions are not extremely 

severe. 
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Table 5. Confirming Experiments and Results. 

Measured Property Experimental Condition Measured Response Predicted Response 

Maximum strength (MPa) 

Predicted maximum a1b1c2d1 21.93 32.34 

Second choice a1b1c3d1 24.90 32.05 

Actual maximum a2b1c2d3 26.42 -------- 

Minimum density (g/cm)3 

Predicted minimum a3b2c1d2 1.80 1.57 

Second choice a3b2c1d2 N/A ------ 

Actual minimum a3b2c1d3 1.68 -------- 

VII. CONCLUSIONS 

Partial factorial experiments are much more efficient than full factorial experiments for exploring the effects 

of a number of parameters on one or more experimental responses. The Taguchi method is one of the most 

efficient and easiest methods to use. This is a consequence of the assumed additivity of the parameter effects 

and the fact that interactions between the parameters are ignored. The fact that the Taguchi method ignores 

parameter interactions means that it is not the optimal method for investigation where strong parameter 

interactions are present and high-precision results are necessary. However, it works very well for screening 

experiments and it is particularly useful as an introduction to partial factorial experimentation, since the 

calculations are simple and easily understood. In addition to being very easy to use, one of the great advantages 

of Taguchi method is that it implicitly includes reduction of system variability via the various formulations of 

the signal-to-noise function can be optimized. 
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